منابع مشابه
Sharp Boundary Trace Inequalities
This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region Ω ⊂ R . The inequalities bound (semi-)norms of the boundary trace by certain norms of the function and its gradient on the region and two specific constants kρ and kΩ associated with the domain and a weight function. These inequalities are sharp in that there are functions for which eq...
متن کاملSharp Sobolev inequalities involving boundary terms
Let (M, g) be a compact Riemannian manifold of dimension n (n ≥ 3) with smooth boundary. In [LZ], we established some sharp trace inequality on (M, g). In this paper we establish some sharp Sobolev inequalities using the method in [LZ]. For n ≥ 3, it was shown by Aubin [Au1] and Talenti [T] that, for p = 2n/(n − 2), 1 S 1 = inf R n |∇u| 2 R n |u| p 2/p u ∈ L p (R n) \ {0}, ∇u ∈ L 2 (R n) , (0.1...
متن کاملSharp Sobolev Trace Inequalities on Riemannian Manifolds with Boundaries
In this paper, we establish some sharp Sobolev trace inequalities on n-dimensional, compact Riemannian manifolds with smooth boundaries. More specifically, let q = 2(n− 1)/(n− 2) , 1 S = inf {∫ R n + |∇u| : ∇u ∈ L(R+) , ∫ ∂R+ |u| = 1 } . We establish for any Riemannian manifold with a smooth boundary, denoted as (M,g), that there exists some constant A = A(M,g) > 0, ( ∫ ∂M |u| dsg) ≤ S ∫ M |∇gu...
متن کاملNečas Center for Mathematical Modeling Boundary Trace Inequalities and Rearrangements
A new approach to boundary trace inequalities for Sobolev functions is presented, which reduces any trace inequality involving general rearrangement-invariant norms to an equivalent, considerably simpler, one-dimensional inequality for a Hardy-type operator. In particular, improvements of classical boundary trace embeddings and new optimal trace embeddings are derived.
متن کاملSharp Jackson inequalities
For trigonometric polynomials on [− , ] ≡ T , the classical Jackson inequalityEn(f )p C r (f, 1/n)p was sharpened by M. Timan for 1<p<∞ to yield n−r { n ∑ k=1 ksr−1Ek(f )p }1/s C r (f, n−1)p where s =max(p, 2). In this paper a general result on the relations between systems or sequences of best approximation and appropriate measures of smoothness is given. Approximation by algebraic polynomials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
سال: 2014
ISSN: 0308-2105,1473-7124
DOI: 10.1017/s0308210512000601